
A NOTE ON MAPPING CLASS GROUP ACTIONS ON DERIVED
CATEGORIES.

NICOLÒ SIBILLA

Abstract. Let Xn be a cycle of n projective lines, and Tn a symplectic torus with n
punctures. Using the theory of spherical twists introduced by Seidel and Thomas [ST], I
will define an action of the pure mapping class group of Tn on Db(Coh(Xn)). The motivation
comes from homological mirror symmetry for degenerate elliptic curves, which was studied
by the author with Treumann and Zaslow in [STZ].
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1. Introduction.

According to Kontsevich’s Homological Mirror Symmetry conjecture (from now on HMS,
see [K]), given a Calabi-Yau variety X and a symplectic manifold X̃, if X and X̃ are mir-
ror partners, then the derived category of coherent sheaves over X, Db(Coh(X)), should
be equivalent to the Fukaya category of X̃, Fuk(X̃). Since Fuk(X̃) is an invariant of the
symplectic geometry of X̃, mirror symmetry predicts that the group of symplectic automor-
phisms of X̃ acts by equivalences on Db(Coh(X)). In [ST] Seidel and Thomas investigate
this aspect of HMS by introducing the notions of spherical object and twist functor, which
can be defined for general triangulated categories, and axiomatize the formal homological
properties enjoyed by equivalences of the Fukaya category induced by generalized Dehn twists
(these are special symplectic automorphisms introduced by Seidel, see [S]). Using their the-
ory they are able, in many interesting examples, to give a conjectural description of the
equivalences of Db(Coh(X)) which should be mirror to symplectic automorphisms of X̃. I
refer the reader to [ST] for a detailed account of this circle of ideas. A brief overview of the
relevant definitions will be given in Section 3 below.

Let Xn be a cycle of n projective lines, i.e. a nodal curve of arithmetic genus 1, with
n singular points. Well known mirror symmetry heuristics suggest that the mirror of Xn

should be a symplectic torus with n punctures, which I shall denote Tn. In the paper [STZ],
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2 NICOLÒ SIBILLA

joint with Treumann and Zaslow, we prove a version of HMS for Xn and Tn, by showing
that the category of perfect complexes over Xn, Perf(Xn), is quasi-equivalent to a certain
conjectural model of Fuk(Tn) which we develop in the paper. See also the recent work [LP]
in which the authors prove, with very different techniques, a HMS statement for the case
n = 1.

Motivated by [STZ], in this paper I explore the consequences of mirror symmetry for
the study of auto-equivalences of Db(Coh(Xn)). Recall that the mapping class group of an
oriented surface Σ can be described as the group of symplectic automorphisms of Σ, modulo
isotopy. The existence of an action of the mapping class group of Tn on Db(Coh(Xn)) does
not follow directly from [STZ], as the model of the Fukaya category considered there is not
acted upon, in any obvious way, by symplectomorphisms of Tn.1 My main result uses the
framework of [ST] to construct an action of the (pure) mapping class group of Tn, PM(Tn),
over Db(Coh(Xn)). In future work, I plan to establish that this action is faithful. It is worth
pointing out that the action I will define is, in an appropriate sense, a categorification of the
symplectic representation of the mapping class group, which can be recovered by considering
the induced action on the numerical Grothendieck group of Perf(Xn) (see Remark 3.7 below.
For a definition of the symplectic representation, the reader can refer to [FM], Chapter 6).

The paper is organized as follows. In Section 2, I give some background on the mapping
class group, and then work out a convenient presentation of PM(Tn). The proof of the main
result, Theorem 3.6, is contained in Section 3. Theorem 3.6 generalizes previous results in
[ST] and in [BK], where the authors considered, respectively, the case of a smooth elliptic
curve, and of the nodal cubic in P2 (i.e. the case n = 1). Equivalences of Db(Coh(Xn)) were
also investigated in [L]. However, as the author in [L] restricts to a subgroup of equivalences
satisfying certain homological conditions, which are violated by the spherical twists I shall
consider below, there is essentially no overlap between his work and the present project.

Acknowledgments: I am grateful to David Treumann and Eric Zaslow for many valuable
conversations, and for our collaboration [STZ], which is the starting point of this paper. I
thank Luis Paris for giving me very useful explanations concerning his paper with Catherine
Labruère [LP]. I would like to thank Bernd Siebert and Hamburg University, and Yuri Manin
and the Max Planck Institute for Mathematics, for their hospitality during a period in which
part of this work was carried out.

2. The mapping class group of a punctured torus.

In this section I will briefly review some basic facts about the mapping class group, and
then give a presentation of the mapping class group of the punctured torus based on [LP].
Also, it will be useful to spell out some relations between mapping classes which were found
by Gervais in [G]. For a comprehensive introduction to the mapping class group I refer the
reader to [FM].

1Note also that the HMS statement in [STZ] involves Perf(Xn), rather than the full derived category of
Xn. However, Db(Coh(Xn)) has the same group of auto-equivalences of Perf(Xn). In fact, any equivalence
of Db(Coh(Xn)) gives, by restriction, an equivalence of Perf(Xn), and it follows from Lemma 3.3 that this
assignment is a bijection.
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Let Σ = Σg,n,b be a differentiable, oriented surface of genus g, with n marked points, and
b boundary components. The mapping class group of Σ, denoted by M(Σ), is the group of
isotopy classes of orientation preserving diffeomorphisms of Σ, which send the set of marked
points to itself, and restrict to the identity on the boundary components. Note that M(Σg,n,b)
is uniquely determined by the parameters g, n, b. The pure mapping class group of Σ is the
subgroup PM(Σ) ↪→ M(Σ) of mapping classes fixing pointwise the set of marked points.
Alternatively, PM(Σ) can be defined as the subgroup of M(Σ) generated by Dehn twists
along simple closed curves (for the definiton of Dehn twist, and a proof of this claim, see
Chapter 3 and 4 of [FM]). In making the above definitions, marked points on Σ could be
interpreted, equivalently, as punctures, and I shall make use freely of both viewpoints in the
following.

A surface Σ with n punctures and b+m boundary components can be immersed in a surface
with n + m punctures and b boundary components (we can trade m boundary components
for m punctures, by gluing a punctured discs along each boundary component we wish to
remove). Further, this immersion induces a map of pure mapping class groups. The details
can be found in Section 2 of [LP], together with the following lemma which will be useful
later.

Lemma 2.1. Let (g, r,m) /∈ {(0, 0, 1), (0, 0, 2)}, then we have the exact sequence

1→ Zm → PM(Σg,n,b+m)→ PM(Σg,n+m,b)→ 1,

where Zm stands for the free abelian group of rank m generated by the Dehn twists along the
m boundary components we are removing.

Set Tn = Σ1,n,0 and Tn,m = Σ1,n,m. The pure mapping class group PM(Tn) is generated
by Dehn twists along n + 1 non-separating simple closed curves. In order to fix ideas, it
is convenient to choose explicit representatives for this collection of curves. I will mostly
follow the notation of [G], to which I refer for further details. Let Λ = Z2 ↪→ R2 be the
standard integral lattice, let T = R2/Z2, and fix a fundamental domain for the action of Λ,
say [0, 1) × [0, 1). Choose as set of marked points P = {p1 = ( 1

n+1
, 1
2
), . . . , pn = ( n

n+1
, 1
2
)},

and identify the index set {1 . . . n} with Z/n endowed with the natural cyclic order.2 A
cyclic order allows us to speak unambiguously about ordered triples. If i, j, k ∈ {1 . . . n}
(not necessarily distinct) form an ordered triple, I shall write i 4 j 4 k. If I require i, j, k to
be distinct, I will use the symbol ≺.

Let α and βi, i ∈ {1 . . . n} be the following simple closed curves: in the fundamental
domain, α is given by [0, 1) × {1

3
}, and βi is given by { i

n+1
− 1

2(n+1)
} × [0, 1). It will be

important to consider also separating curves γi,j indexed by an ordered pair i, j ∈ {1 . . . n}.
The loop γi,j can be described as the boundary of a tubular neighborhood of a straight
segment σ in T, starting at pi and ending at pj, and such that pk ∈ σ if and only if i 4 k 4 j.
A schematic representation of these curves is given in Figure 1.

If µ is a simple closed curve in a differentiable surface Σ, denote Tµ the Dehn twist along it.
I will consider Tn−1,1 to be the closed subsurface of Tn obtained by cutting out a small open
disc centered in pn (small means that its boundary should not intersect any of the loops

2In order to make sense of the successor operator • + 1 on the index set, I will also use the additive
structure of Z/n.
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β1 β2 β3
γ2,n

p1 p2 p3 pn

βn

α

Figure 1. The picture above represents the simple closed curves introduced
earlier, which are visualized as subsets of the fixed fundamental domain for
the action of Λ.

described above). It follows from [LP] that both PM(Tn) and PM(Tn−1,1) are generated
by Dehn twists Tα, and Tβi , i ∈ {1 . . . n}. I will refer to this collection of Dehn twists as
Humphrey generators, in analogy with Humphrey’s set of generators for the mapping class
group of a compact surface.

A presentation of PM(Tn−1,1) in terms of Humphrey generators can be read off Proposition
3.3 of [LP]. For the reader’s convenience I collect it below.

Proposition 2.2. The pure mapping class group PM(Tn−1,1) is generated by Tα, and Tβi,
i ∈ {1 . . . n}, subject to the following relations:

• (Braid relations) for every i, j ∈ {1 . . . n},
TβiTβj = TβjTβi,
TαTβiTα = TβiTαTβi .

• (Commutativity relations) for every i, j, k ∈ {1 . . . n}, i ≺ j ≺ k,

Tβi(T
−1
α T−1βk+1

T−1βj
T−1α TβkTαTβjTβk+1

Tα) = (T−1α T−1βk+1
T−1βj

T−1α TβkTαTβjTβk+1
Tα)Tβi .

An analogous presentation for PM(Tn) is described by the following Proposition.

Proposition 2.3. Let i, j ∈ {1 . . . n}, and set

Ai,j = Tβj+1
TαT

−1
βi+1

TβiT
−1
α T−1βj+1

TαT
−1
βi
Tβi+1

T−1α T−1βi+1
Tβi .

The pure mapping class group PM(Tn) is generated by Tα, and Tβi, i ∈ {1 . . . n}, subject to
the following relations:

• Braid relations and Commutativity relations (see Proposition 2.2).
• (G-relation) (TαTβ1)

6 = A1,nA2,n . . . An−1,n.

Before giving a proof of Proposition 2.3, it is useful to consider an alternative presentation
of PM(T2), which will play a role in the next Section, and is contained in Corollary 2.4 below.
Although Corollary 2.4 follows quite easily from Proposition 2.3, rather than discussing the
details of this derivation, I refer the reader to [PS] for a direct proof.
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β̃m,r

α̃l

pl−1 pl pl+1 pr pr+1pm−1 pm pm+1

Figure 2. Above is a picture of the simple closed curves α̃m, and β̃n,r, which
are discussed in the proof of Lemma 2.5.

Corollary 2.4. The pure mapping class group PM(T2) is generated by Tα, Tβ1 and Tβ2,
subject to the following relations:

• Braid relations
• (G2-relation) (Tβ1TαTβ2)

4 = 1.

The proof of Proposition 2.3 depends on Proposition 2.2, and Lemma 2.1. It follows
immediately from the definition of Dehn twist that, for all i ∈ {1 . . . n}, Tγi,i = 1 in PM(Tn).
In Tn−1,1, however, γn,n is isotopic to the boundary component, and therefore Tγn,n defines
a non trivial mapping class. Lemma 2.1 assures us that the only extra relation needed to
obtain PM(Tn) from the presentation in Proposition 2.2 is precisely Tγn,n = 1. What is left
to do is finding an expression for Tγn,n as a product of Humphrey generators. To achieve
this, I need to introduce two more ingredients. The first is the following lemma,

Lemma 2.5. Let i, j ∈ {1 . . . n}, and, as in Proposition 2.3, set

Ai,j = Tβj+1
TαT

−1
βi+1

TβiT
−1
α T−1βj+1

TαT
−1
βi
Tβi+1

T−1α T−1βi+1
Tβi ,

then Tγi,j = Ai,jTγi+1,j
.

Proof. Let Tn−1 be the torus with n−1 punctures obtained from Tn by filling in the puncture
pi. The Birman exact sequence (see [FM], Theorem 4.6), applied to the inclusion Tn ↪→ Tn−1,
yields

1→ π1(Tn−1, pi)
Push−→ PM(Tn)

Forget−→ PM(Tn−1)→ 1,

where π1(Tn−1, pi) is the fundamental group of Tn−1 with base-point pi. The names attached
to the maps above follow the conventions of Chapter 4 in [FM], to which I refer the reader
for further details on the Birman exact sequence.

The key point is that Tγi,jT
−1
γi+1,j

lies in the image of the morphism Push. Figure 2 describes

the geometry of two classes of simple closed curves in Tn, called respectively α̃m, and β̃n,r,
m,n, r ∈ {1 . . . n}. It immediately follows from the definition of Push that, in PM(Tn),

Tγi,jT
−1
γi+1,j

= TβiT
−1
βi+1

TβjT
−1
β̃i,j
.
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It is not hard to express Tβ̃i,j in terms of Humphrey generators. In fact, by simply applying

the definition of Dehn twist, one can verify that β̃i,j = Tα̃iT
−1
α (βj), and α̃i = T−1βi

Tβi+1
(α).3

Now recall that, if µ and µ′ are two simple closed curves in an oriented surface Σ, then
TTµ(µ′) = TµTµ′T

−1
µ (this is Fact 3.7 in [FM]). Thus

Tβ̃i,j = Tα̃iT
−1
α TβjTαT

−1
α̃i
, and Tα̃i = T−1βi

Tβi+1
TαT

−1
βi+1

Tβi .

Using this last identity, we can rewrite first Tβ̃i,j , and then Tγi,jT
−1
γi+1,j

, as a product of

Humphrey generators, and this completes the proof of Lemma 2.5. �

The second ingredient is given by a family of relations in the mapping class group, intro-
duced by Gervais in [G] as star relations.

Proposition 2.6. Let i, j, k ∈ {1 . . . n}, and i 4 j 4 k. Then

(TαTβiTβjTβk)
3 = Tγi,jTγj,kTγk,i .

Proof. See Theorem 1 in [G]. �

Note that, when i = j = k, one obtains the following ‘degenerate’ star relations,

(TαTβiTβiTβi)
3 = Tγi,i−1

.

Using the braid relations, the product on the LHS of the equality can be rewritten as (TαTβi)
6,

and therefore Proposition 2.6 yields, for all i ∈ {1, . . . , n}, the identity

(TαTβi)
6 = Tγi,i−1

.

Let us fix i ∈ {1 . . . n}, say i = 1. Then the degenerate star identity for i = 1 combined
with an iterated application of Lemma 2.5 (from which we import the notation), gives the
formula

(TαTβ1)
6 = (A1,nA2,n . . . An−1,n)Tγn,n .

Since the Ai,j-s are defined as a product of Tα and Tβi-s, this yields the sought after expres-
sion of Tγn,n in terms of Humphrey generators, and concludes the proof of Proposition 2.3.

Lemma 2.7 below is the last result of this Section, and describes a family of identities in
PM(Tn−1,1), which will be useful in Section 3.

Lemma 2.7. If i ∈ {1, . . . , n}, then

(TαTβ1)
6(A1,nA2,n . . . An−1,n)−1 = (TαTβi)

6(Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1)
−1

as elements of PM(Tn−1,1).

Before proceeding with the proof of Lemma 2.7, a few comments are in order. Note
that the G-relation of Proposition 2.3 depends on the degenerate star identity for i = 1.
However, because of the evident cyclic symmetry of the problem, in PM(Tn) one would have
more generally, for any i ∈ {1 . . . n}, the identity

(TαTβi)
6 = Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1.

3Note that here, as everywhere in the paper, I am considering curves only up to isotopy.



A NOTE ON MAPPING CLASS GROUP ACTIONS ON DERIVED CATEGORIES. 7

As a consequence, the following chain of equalities holds in PM(Tn),

(TαTβ1)
6(A1,nA2,n . . . An−1,n)−1 = (TαTβi)

6(Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1)
−1 = 1.

Lemma 2.7 asserts that, in fact, the first of these two equalities can be lifted to PM(Tn−1,1).

Proof of Lemma 2.7. Consider the element G′ ∈ PM(Tn−1,1) obtained by multiplying the
expression on the LHS of the equality, by the inverse of the expression on the RHS, that is

G′ = (TαTβi)
6(Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1)

−1((TαTβ1)
6(A1,nA2,n . . . An−1,n)−1)−1.

Also, set G = (TαTβi)
6(Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1)

−1. As I pointed out above, the
image of G′ in PM(Tn) = PM(Tn−1,1)/〈G〉 is equal to 1. Since G is central it follows that
G′ must be a power of G, that is, in PM(Tn−1,1) G′ = Gn for some n ∈ Z. I will show that
n = 0. This implies that G′ = 1 in PM(Tn−1,1), and proves Lemma 2.7.

The identity G′ = Gn is equivalent to the following,

(1) (TαTβi)
6(Ai,i+n−1Ai+1,i+n−1 . . . Ai+n−2,i+n−1)

−1 = ((TαTβ1)
6(A1,nA2,n . . . An−1,n)−1)n+1.

Recall that there is a homomorphism PM(Tn−1,1)
Forget−→ PM(T0,1),

4 which generalizes the
map of the same name appearing in Birman exact sequence (see [FM], Section 9.1 for more
details). Since the map Forget is induced by the inclusion Tn−1,1 ↪→ T0,1, and all the βi-s
have identical isotopy class as subsets of T0,1, we have that for all i, j ∈ {1, . . . , n},

Forget(Tβi) = Forget(Tβj) =: Tβ, and Forget(Ai,j) = 1.

Applying Forget to both sides of equation (1), yields therefore the identity

(TαTβ)6 = (TαTβ)6(n+1)

in PM(T0,1). As explained by Corollary 7.3 in [FM], there are no torsion elements in the
mapping class group of a surface Σ, provided that its boundary set is non-empty. This is
indeed the case of T0,1, and thus (n+ 1) must equal 1, as desired. �

3. The action of P̃M(Tn) on DbCoh(Xn).

Let Xn be a cycle of n projective lines over a field κ. That is, Xn is a connected reduced
curve with n nodal singularities, such that its normalization X̃n

π→ X is a disjoint union of n
projective lines D1, . . . , Dn, with the property that the pre-image along π of the singular set
interesects each Di in exactly two points. Following the discussion in Section 1 of [ST], the
group acting on DbCoh(Xn) is going to be a suitable central extension of PM(Tn), whose
elements should be viewed as graded symplectic automorphisms of the mirror of Xn, i.e. the
torus with n punctures.

Definition 3.1. Define P̃M(Tn) as the Z-central extension of PM(Tn),

0→ Z→ P̃M(Tn)→ PM(Tn)→ 1,

generated by Tα, Tβi i ∈ {1 . . . n}, and a central element t, subject to the following relations:

• Braid relations and Commutativity relations, as in Proposition 2.3,
• (G̃-relation) (TαTβ1)

6(A1,nA2,n . . . An−1,n)−1 = t2.

4By T0,1 I mean a symplectic torus with no punctures, and one boundary component.
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Remark 3.2. By lifting the G2-relation of Corollary 2.4 to the central extension, one can give

an alternative presentation of P̃M(T2) in which the G̃-relation of Definition 3.1 is replaced
by the following,

• (G̃2-relation) (Tβ1TαTβ2)
4 = t2.

The theory of spherical objects was introduced by Seidel and Thomas in [ST]. Given a
triangulated category C, under mild assumptions, to any object E in C such that Hom∗(E , E)
is isomorphic to the cohomology of the n-sphere (i.e. a spherical object), one can associate
an autoequivalence, called twist, TE : C → C.

Let x1 . . . xn ∈ Xn be (closed) smooth points, such that xi lies on the i-th irreducible com-
ponent of Xn. It is easy to see that the sheaves O = OXn , κ(xi) i ∈ {1 . . . n} in Db(Coh(Xn))
are 1-spherical, and therefore determine twist functors TO, Tκ(xi). These equivalences, to-

gether with the shift functor, will define the action of P̃M(Tn) on Db(Coh(Xn)). The main
reference for the computations below are [ST] and [BK]. In [BK] the reader can find a de-
tailed treatment of the case n = 1, while in [ST] Seidel and Thomas discuss the smooth case,
i.e. the action of the mapping class group of a torus with no marked points on the derived
category of a smooth elliptic curve.

The following lemma will be extremely useful for computations.

Lemma 3.3. Let F : Db(Coh(Xn))→ Db(Coh(Xn)) be an auto-equivalence of triangulated
categories. If

• F (O) ∼= O, and
• for all i ∈ {1 . . . n}, F (κ(xi)) ∼= κ(xi),

then there exists an isomorphisms f : Xn → Xn, such that F is naturally equivalent to
f ∗ : Db(Coh(Xn))→ Db(Coh(Xn)).

Proof. Note that Xn is projective, as X1 is isomorphic to a nodal cubic curve in P2, X2 can
be embedded as the union of a line and a quadric in P2, and, if n ≥ 3, Xn can be embedded
as a union of n linear subspaces in Pn−1. Consider the line bundle L = O(x1 + · · ·+xn) over
Xn. L is ample (and very ample for n ≥ 3). Since F preserves O and κ(xi), it is easy to see
that F (L⊗m) ∼= L⊗m for all m ∈ Z. In fact, L−1 is isomorphic to the kernel of any surjective

morphism of sheaves p : O →⊕i=n
i=1 κ(xi). F (L−1) is therefore isomorphic to the (co-)cone

of the map

F (O)(∼= O)
F (p)→ F (

i=n⊕
i=1

κ(xi))(∼=
i=n⊕
i=1

κ(xi)),

where F (p) must be surjective. It follows that F (L−1) ∼= L−1. Similarly L is isomorphic to

the cone of any morphism in Hom1(
⊕i=n

i=1 κ(xi),O) corresponding, under Serre duality, to a
surjective morphism p as above, and thus F (L) ∼= L. Analogous arguments can be made for
all the tensor powers of L.

From here, in order to prove the claim, is sufficient to mimic the proof of Theorem 3.1 of
[BO] (see also Proposition 6.18 in [Ba], in which the argument from [BO] is applied, as here, in
the context of singular algebraic varieties). A brief summary of the argument goes as follows.
Note first that the functor F induces a graded automorphism of the homogeneous coordinate
algebra

⊕m=∞
m=0 H0(L⊗m), which, up to rescaling, must be given by the pull-back along an
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automorphism f : Xn → Xn. Call C the full linear sub-category of Db(Coh(Xn)) having as
objects {L⊗m}m∈Z. As explained in [BO], one can define a natural equivalence between the
restrictions to C of F and f ∗. Further, since Xn is projective, and L is ample, {L⊗m}m∈Z
form an ample sequence in the sense of [BO] (for a proof of this, see Proposition 3.18 of
[Huy]). The claim then follows from Proposition A.3 of [BO], which implies that the natural
equivalence F ∼= f ∗ over C can be extended to the full derived category Db(Coh(Xn)). �

Remark 3.4. Note that if f : Xn → Xn is an automorphism such that f(xi) = xi, and
n ≥ 3, then f is the identity. If n ≤ 2, f may be non-trivial and act as a (non-trivial)
permutation on the pre-image of the singular locus in the normalization. However it is
immediate to see that f is an involution, i.e. f 2 = Id.

Lemma 3.5. Let x ∈ Xn be a smooth point, then

• Tκ(x) ∼= −⊗O(x),
• TO(κ(x)) ∼= O(−x)[1],
• TO(O(x)) ∼= κ(x),
• TO(O) ∼= O.

Proof. The first isomorphism is proved in [ST], Section 3.d. For the other isomorphisms, see
Lemma 2.13 in [BK]. �

I am now ready to state the main theorem of this paper.

Theorem 3.6. The assignment

• for all i ∈ {1 . . . n}, Tβi 7→ Tκ(xi),
• Tα 7→ TO, and
• t 7→ [1],

defines a weak action of P̃M(Tn) on Db(Coh(Xn)).

Following [ST], by weak action I mean that this assignment defines a homorphism between

P̃M(Tn), and the group of autoequivalences of Db(Coh(Xn)) modulo natural isomorphism of
functors. The action defined in Theorem 3.6 depends on the choice of x1, . . . , xn. However,
the action is unique up to conjugation. Note that there is a natural (C∗)n-action on Xn, with
the property that the i-th copy of C∗ acts by multiplication on the i-th component of Xn. Let
λ = (λ1, . . . , λn) ∈ (C∗)n, and let mλ : Xn → Xn be the associated automorphism. Then one
can show that, for all i ∈ {1, . . . , n}, (m∗λ)Tκ(xi)(m

∗
λ)
−1 = Tk(λixi), and (m∗λ)TO(m∗λ)

−1 = TO.

Proof of Theorem 3.6. I will show that Theorem 3.6 gives a well-defined homomorphism, by
checking that the relations in Definiton 3.1 hold.

Braid relations. For all i, j ∈ {1, . . . , n}, O, κ(xi) and κ(xj) form an A2-configuration, in
the language of [ST]. The fact that such a collection of spherical twists satisfies the braid
relations is proved in Proposition 2.13 of [ST].

Commutativity relations. By Lemma 2.11 of [ST], if E1, E2 are spherical objects, then
TE2TE1T

−1
E2
∼= TTE2 (E1). It follows that, in order to prove the Commutativity relations, is

sufficient to show that, for every i, j, k ∈ {1 . . . n}, i ≺ j ≺ k,

T−1O T−1κ(xk+1)
T−1κ(xj)

(T−1O Tκ(xk)TO)Tκ(xj)Tκ(xk+1)TO(κ(xi)) ∼= κ(xi)⇔
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T−1O T−1κ(xk+1)
T−1κ(xj)

(Tκ(xk)TOT
−1
κ(xk)

)Tκ(xj)Tκ(xk+1)TO(κ(xi)) ∼= κ(xi)⇔ 5

TOT
−1
κ(xk)

Tκ(xj)Tκ(xk+1)TO(κ(xi)) ∼= T−1κ(xk)
Tκ(xj)Tκ(xk+1)TO(κ(xi)).

By Lemma 3.5 T−1κ(xk)
Tκ(xj)Tκ(xk+1)TO(κ(xi)) ∼= O(−xi + xj − xk + xk+1)[1]. Thus, I need

to show that TO(O(−xi + xj − xk + xk+1)) ∼= O(−xi + xj − xk + xk+1). Proposition 2.12
of [ST] states that if E1, E2 are spherical objects such that Homi(E1, E2) = 0 for all i,
then TE1(E2) ∼= E2. The Commutativity relations reduce therefore to the claim: for all
i, j, k ∈ {1 . . . n}, i ≺ j ≺ k,

H0(O(−xi + xj − xk + xk+1)) = H1(O(−xi + xj − xk + xk+1)) = 0.

This follows from Theorem 2.2 of [DGK], which gives a general formula for computing the
cohomology groups of indecomposable vector bundles over a cycle of projective lines.
G̃-relation. Assume first that n ≥ 3. I will handle separately the case n = 2, for which

I will use the alternative G̃2-relation of Remark 3.2 (for the case n = 1, the reader should
refer to [BK]). Let i, j ∈ {1 . . . n}, and define

Ei,j = Tκ(xj+1)TOT
−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(xj+1)

TOT
−1
κ(xi)

Tκ(xi+1)T
−1
O T−1κ(xi+1)

Tκ(xi).

I need to prove that (TOTk(x1))
6 ∼= (E1,nE2,n . . . En−1,n)[2]. After Lemma 3.3 and Remark

3.4, it is sufficient to check the G̃-relation on O, and κ(xi) for all i ∈ {1 . . . n}. In fact,
in view of Lemma 2.7, it is enough to evaluate the G̃-relation on O and κ(x1), as, for any
k ∈ {1 . . . n},

(TOTκ(x1))
6(κ(xk)) ∼= (E1,nE2,n . . . En−1,n)[2](κ(xk))⇔

(TOTκ(xk))
6(κ(xk)) ∼= (Ei,i+n−1Ei+1,i+n−1 . . . Ei+n−2,i+n−1)[2](κ(xk)),

and, by the cyclic symmetry of the problem, the latter identity is proved in exactly the same
way as the claim that the G̃-relation holds for κ(x1).
• G̃-relation on O. Simply by keeping track of the isomorphisms collected in Lemma 3.5,

one can see that

(TOTκ(x1))
6(O) ∼= (TOTκ(x1))

4(O(−x1)[1]) ∼= (TOTκ(x1))
2(κ(x1)[1]) ∼= O[2].

On the other hand, I will show that, for all i, j ∈ {1, . . . , n}, Ei,j(O) ∼= O, and therefore

(E1,nE2,n . . . En−1,n)[2](O) ∼= O[2],

as expected. Note first that if x, y ∈ Xn are smooth points lying on different connected
components, then TO(O(x−y)) ∼= O(x−y). This again follows from Theorem 2.2 of [DGK],
but can also be checked directly using the braid relations. Using this isomorphism, and
Lemma 3.5, it is easy to check that

Ei,j(O) = Tκ(xj+1)TOT
−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(xj+1)

TOT
−1
κ(xi)

Tκ(xi+1)T
−1
O T−1κ(xi+1)

Tκ(xi)(O) ∼=
Tκ(xj+1)TOT

−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(xj+1)

TOT
−1
κ(xi)

Tκ(xi+1)(O(xi − xi+1)) ∼=
Tκ(xj+1)TOT

−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(xj+1)

(O) ∼=
Tκ(xj+1)TOT

−1
κ(xi+1)

(κ(xj+1)[−1]) ∼= O.
5The isomorphism T−1O Tκ(xk)TO

∼= Tκ(xk)TOT
−1
κ(xk)

follows immediately from the braid relations.
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• G̃-relation on κ(x1). As before, it is enough to apply Lemma 3.5 to see that

(TOTκ(x1))
6(κ(x1)) ∼= (TOTκ(x1))

4(O[1]) ∼= (TOTκ(x1))
2(O(−x1)[2]) ∼= κ(x1)[2].

Further, for all i ∈ {1, . . . , n− 1}, Ei,n(κ(x1)) ∼= κ(x1). In fact,

Ei,n(κ(x1)) = Tκ(x1)TOT
−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(x1)

TOT
−1
κ(xi)

Tκ(xi+1)T
−1
O T−1κ(xi+1)

Tκ(xi)(κ(x1)) ∼=
Tκ(x1)TOT

−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(x1)

TOT
−1
κ(xi)

Tκ(xi+1)(O(x1)).

Now,
Tκ(x1)TOT

−1
κ(xi+1)

Tκ(xi)T
−1
O T−1κ(x1)

TOT
−1
κ(xi)

Tκ(xi+1)(O(x1)) ∼= κ(x1)⇔
T−1κ(xi+1)

Tκ(xi)(T
−1
O T−1κ(x1)

TO)T−1κ(xi)
Tκ(xi+1)(O(x1)) ∼= O(x1)⇔ 6

T−1κ(xi+1)
Tκ(xi)(Tκ(x1)T

−1
O T−1κ(x1)

)T−1κ(xi)
Tκ(xi+1)(O(x1)) ∼= O(x1)⇔

T−1O T−1κ(x1)
T−1κ(xi)

Tκ(xi+1)(O(x1)) ∼= O(xi+1 − xi)⇔
O(xi+1 − xi) ∼= TO(O(xi+1 − xi)).

As I pointed out above, this last isomorphism can be proved using the braid relations. Thus

(E1,nE2,n . . . En−1,n)[2](κ(x1)) ∼= κ(x1)[2],

and this concludes the proof of Theorem 3.6 for the case n ≥ 3.
The case n = 2. Note that there are isomorphisms

• (Tκ(x1)TOTκ(x2))
2(O) ∼= O[1], and

• (Tκ(x1)TOTκ(x2))
2(κ(x1)) ∼= κ(x2)[1], (Tκ(x1)TOTκ(x2))

2(κ(x2)) ∼= κ(x1)[1].

Let us check this for κ(x1):

(Tκ(x1)TOTκ(x2))(Tκ(x1)TOTκ(x2))(κ(x1)) ∼= (Tκ(x1)TOTκ(x2))(O[1]) ∼= κ(x2)[1].

Consider an involution σ : X2 → X2 such that σ(x1) = x2, and σ(x2) = x1. It follows
from Remark 3.4 that there is an isomorphism f : X2 → X2, and a natural equivalence
(Tκ(x1)TOTκ(x2))

2 ∼= f ∗σ∗[1]. As σ and f commute, by taking the square of this natural
equivalence, one gets

(Tκ(x1)TOTκ(x2))
4 ∼= (f ∗σ∗[1])(f ∗σ∗[1]) ∼= (f ∗)2(σ∗)2[2] ∼= [2].

In view of Remark 3.2, this implies that the action of P̃M(T2) on Db(Coh(X2)) is well defined,
and proves the case n = 2 of Theorem 3.6. �

Remark 3.7. It follows from results in Appendix D of [B], that the action defined by
Theorem 3.6 is, in an appropriate sense, a categorification of the symplectic representa-
tion of the mapping class group. Denote Knum(Xn) the quotient of K0(Perf(Xn)) by the
radical of the Euler form (see Appendix D of [B] for further details). The Euler form in-
duces a non-degenerate skew-symmetric form on Knum(Xn), and there is an isomorphism
of symplectic lattices Knum(Xn) ∼= H1(Tn,Z)(∼= Zn+1) (here, Tn denotes the torus with the
n marked points removed). Note that the induced action of P̃M(Tn) on Knum(Xn) fac-
tors through PM(Tn) ⊕ Z2. Bodnarchuk’s computations imply that the resulting action of

6The isomorphism T−1O T−1κ(x1)
TO ∼= Tκ(x1)T

−1
O T−1κ(x1)

is obtained from the one in Footnote 5, by taking

inverses on both sides of the “∼=” sign.
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PM(Tn) on Knum(Xn) is isomorphic to the standard symplectic representation of PM(Tn)
over H1(Tn,Z).
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